

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Magnetic structure of the YbMn₂SbBi compound

A.V. Morozkin^{a,*}, P. Manfrinetti^b

^a Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992, Russia ^b Dipartimento di Chimica, Universita di Genova, Via Dodecaneso 31, 16146 Genova, Italy

ARTICLE INFO

Article history: Received 5 February 2008 Received in revised form 11 December 2010 Accepted 16 December 2010 Available online 24 December 2010

Keywords: Rare earth intermetallics Ytterbium manganese antimonide and bismuthide Neutron diffraction Magnetic structure

ABSTRACT

A neutron diffraction investigation has been carried out on the trigonal La₂O₂S-type (hP5, space group $P\bar{3}ml$, No. 164; also CaAl₂Si₂-type) YbMn₂SbBi intermetallic compound. The YbMn₂SbBi presents antiferromagnetic ordering below 138(3)K and ferrimagnetic ordering below 112(3)K. Between 138 and 112 K, the magnetic structure of YbMn₂SbBi consists of antiferromagnetically coupled *ab*-plane magnetic moments of the manganese atoms (\mathbf{D}_{1d} magnetic point group). Below 112(3)K, the ferromagnetic components of Yb and Mn begin to develop, and the magnetic structure of YbMn₂SbBi becames the sum antiferromagnetic component with \mathbf{D}_{1d} magnetic point group and ferromagnetic one with \mathbf{C}_2 magnetic point group. The magnitude of Yb and Mn magnetic moments in YbMn₂SbBi at 2 K (M_{Yb} = 3.6(2) μ_B , M_{Mn} = 3.5(2) μ_B) correspond to the trivalent state of the Yb ions and tetravalent state of the Mn ions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The existence of the YbMn₂Sb₂ compound, adopting the La₂O₂Stype structure (also called CaAl₂Si₂-type; hP5, Space group $P\bar{3}ml$, No. 164, \mathbf{D}_{3d} ($\overline{3}2/m$) point group) was earlier reported by Ruhl and Jeitschko [1]: in this structure prototype the Yb atoms occupy the 1a(0, 0, 0) special position, manganese atoms occupy the 2d site $Z_{\rm Sb}$). The magnetic ordering (with a magnetic transition at about 120 K) and magnetic structure have been found for this compound in works [2,3]. The commensurate magnetic structure of YbMn₂Sb₂ (C_i magnetic point group, P1 magnetic space group) consists of antiferromagnetically coupled manganese magnetic moments in the Mn1 [1/3, 2/3, Z_{Mn}] and Mn2 [2/3, 1/3, -Z_{Mn}] positions, the ytterbium magnetic moment is zero. At 4 K, the magnetic moment of the Mn atom is $\mu_{Mn} = 3.6(1) \mu_B$ [3] that corresponds to the tetravalet state of manganese in YbMn₂Sb₂ ($M^{Mn4+} = 4 \mu_B [4]$).

The substitution of Sb for Bi in YbMn₂Sb₂ compound leads to the formation of the YbMn₂SbBi solid solution with changes in interatomic distances and considerable changes in the magnetic parameters. Hence, to determine the type of magnetic ordering and the magnetic structure of YbMn₂SbBi, neutron diffraction study was carried out and the results are presented here.

2. Synthesis and experimental details

Commercial ytterbium (pieces cut from ingot, with purity 99.9 wt.%), manganese (small grains from a platelet previously surface-cleaned by conc. HNO₃, with purity 99.99 wt.%), antimony (grains, with 99.999 wt.% purity) and bismuth (grains, with 99.999 wt.% purity), were used as the starting components. After few preparations were firstly attempted in an arc-furnace, and due to the fact that preparation of such a kind of samples by arc melting leads to a non-negligible weight loss (i.e.: as it generally happens for melting and annealing high-melting compounds containing one or more volatile metals), a new synthesis method has also been attempted. also. Even being more laborious technique (since it is a two-step procedure), and requiring sealed containers, it has been successfully employed to prepare a large and single-phase sample (total weight of about 9g) and utilised in the present work. As a first step, the equiatomic binary alloy Mn₂SbBi has been prepared by induction melting of the elements in outgassed Ta crucibles, closed by welding under pure Ar, by heating up to 1250-1300 °C; manganese antimonide forms by nearly congruent melting, besides, its formation temperature (840 °C) is relatively low: much lower than that of the melting point of Mn metal (1246 °C) [5]. In the second step, Yb and Mn₂SbBi have been mixed in the stoichiometric amounts, sealed again under Ar into an outgassed Ta crucible, and reacted by induction heating up to about 1300 °C. The crucibles were then sealed under vacuum in quartz tubes and annealed in a resistance furnace at 800 °C for 7 days; after annealing, they were air cooled. Preparation of Mn₂SbBi inside a Ta crucible has proved not to give rise to pollution contamination due to reaction towards the container material, as well as no Ta contamination in the final YbMn₂SbBi was noticed.

X-ray powder patterns were obtained either by a Guinier-Stoe camera (Cu Ka radiation, pure Si as an internal standard: *a* = 0.54308 nm), or on a diffractometer DRON-3 (Cu K α radiation, 2 Θ = 20–70°, 0.05° step, 6 s/step). The Guinier patterns were indexed with the help of the Lazy-Pulverix program [6], the lattice parameters were calculated by least squares method.

The neutron diffraction investigation was carried out from 150 K to 2 K in zero applied field at the Institute Laue-Langevin, Grenoble, France (on the powder D1B diffractometer, wavelength $\lambda = 0.252$ nm) [7]. The diffraction patterns were indexed, and the calculations performed, by using the Fullprof-program [8].

Corresponding author. Tel.: +7 095 9393472; fax: +7 095 9328846. E-mail address: morozkin@general.chem.msu.ru (A.V. Morozkin).

^{0925-8388/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2010.12.121

Table 1

Interatomic distances $D \pm 5 \times 10^{-4}$ nm and then ratio to sum of the atomic radii [9] of corresponding atom $\Delta = D/(R_{atom1} + R_{atom2})$ for atoms in La₂O₂S-type compounds at 300 K: YbMn₂Sb₂ (*a* = 0.4528 nm, *c* = 0.7448 nm, *Z*_{Mn} = 0.629, *Z*_{Sb} = 0.251) and YbMn₂SbBi (*a* = 0.45493 nm, *c* = 0.7475 nm, *Z*_{Mn} = 0.615, *Z*_X = 0.250).

Atoms	<i>D</i> (nm)	Δ
(a) YbMn ₂ Sb ₂		
Yb-6Sb	0.3214	1.01
-6Mn	0.3804 ^b	1.24
–6Yb	0.4528	1.30
Mn–3Sb	0.2763	0.99
–1Sb	0.2815	1.01
–3Mn	0.3244 ^c	1.22
–3Yb	0.3804 ^b	1.24
-6Mn	0.4528 ^d	1.70
Sb-3Mn	0.2763	0.99
–1Mn	0.2815	1.01
–3Yb	0.3214	1.01
(b) YbMn ₂ SbBi		
Yb-6X ^a	0.3223	1.00
-6Mn	0.3896 ^b	1.27
–6Yb	0.4549	1.31
Mn-1X	0.2728	0.96
-3X	0.2814	1.00
–3Mn	0.3139 ^c	1.18
–3Yb	0.3896 ^b	1.27
-6Mn	0.4549 ^d	1.70
X–1Mn	0.2728	0.96
-3Mn	0.2814	1.00
–3Yb	0.3223	1.00

^a $X = Sb_{0.5}Bi_{0.5}$.

^b Yb-Mn_{1.2} distance.

^c Mn₁-Mn₂ distance.

 d Mn₁-Mn₁ (Mn₂-Mn₂) distance.

3. Results and discussion

The substitution of Sb for Bi in YbMn₂Sb₂ compound leads to changes in cell parameters and interatomic Yb–Mn_{1,2}, Mn₁–Mn₁ (Mn₂–Mn₂) and Mn₁–Mn₂ distances: a = 0.4528 nm, c = 0.7448 nm, $Z_{Mn} = 0.629$, $Z_{Sb} = 0.251$ in YbMn₂Sb₂ and a = 0.45493 nm, c = 0.7475 nm, $Z_{Mn} = 0.615$, $Z_X = 0.250$ in YbMn₂SbBi (Table 1). The ratio of shortest interatomic distances to sum of the atomic radii of Yb, Mn, Sb and Bi atom $\Delta = D/(R_{atom1} + R_{atom2})$ corresponds to the metallic nature of bond and trivalet state of Yb in the YbMn₂Sb₂ and YbMn₂SbBi (R_{Yb}^{III} = 0.1740 nm, R_{Mn} = 0.1334 nm, R_{Sb} = 0.1451 nm, R_{Bi} = 0.1537 nm [9]), The Mn₁–Mn₂ distances decreases from YbMn₂Sb₂ to YbMn₂SbBi with distortion of Mn coordination polyhedron.

In general, the symmetry operation of $\mathbf{D_{3d}}$ ($\bar{3}2/m$) point group includes $\mathbf{S_6}$ ($\bar{3}$), $\mathbf{D_3}$ ($\mathbf{32}$), $\mathbf{C_{3v}}$ ($\mathbf{3m}$) subgroups of index 2, $\mathbf{D_{1d}}$ (2/m) subgroup of index 3, $\mathbf{C_3}$ ($\mathbf{3}$) subgroup of index 4 and $\mathbf{C_{1v}}$ (\mathbf{m}), $\mathbf{C_i}$ ($\mathbf{1'}$) and $\mathbf{C_2}$ ($\mathbf{2}$) subgroups of index 6 [10]. The possible magnetic point groups for the $\mathbf{D_{3d}}$ ($\bar{3}2/m$) point group are above-mentioned "colourless" point groups and "black-white" (Shubnikov) { $\mathbf{S_6}$, $2_x \times \mathbf{S_6} \times 1'$ }, { $\mathbf{D_3}$, $m_x \times \mathbf{D_3} \times 1'$ } and { $\mathbf{C_{3v}}$, $2_x \times \mathbf{C_{3v}} \times 1'$ }. The magnetic structure of the La₂O₂S-type compound was determined in terms of the symmetry of above-mentioned magnetic point groups.

The evolution of the magnetic order upon cooling shows the development of commensurate magnetic reflections with wave vector $\mathbf{K}_0 = [0, 0, 0]$ in the YbMn₂SbBi neutron diffraction patterns (Fig. 1). Thermal variation of magnetic reflections shows the magnetic ordering below ~138 K (Fig. 2a). Analysis of the diffraction data shows that between 138 and 112 K, the magnetic structure of YbMn₂SbBi consists of *ab*-plane antiferromagnetically coupled magnetic moments of the manganese atoms that normal to *a* axis (**D**_{1d} magnetic point group, **P2/m** magnetic space group, **AF**^{K0} (**D**_{1d}) antiferromagnetic component) (Fig. 3a). Below

Fig. 2. Thermal evaluation of some reflections (a) and Yb and Mn magnetic components (b) of the $YbMn_2SbBi$.

Table 2

Crystallographic and magnetic parameters of La₂O₂S-type YbMn₂SbBi compound at different temperatures *T*: the temperatures of magnetic ordering $T_{N,C}$, cell parameters *a*, *c*, atomic position parameters Z_{Mn} and Z_X , ferromagnetic and antiferromagnetic component M_j^F and M_j^{AF} of the *j* atom (Yb, Mn1^a and Mn2), φ_j^{AF} and φ_j^F are the angles of corresponding magnetic component with *a* axis. The magnetic moments lie in the *ab* plane: the θ angle of all magnetic components with *c* axis is 90°. Reliability factors R_F (crystal structure) and R_F^m (magnetic structure) are given in percent (%).

T _{N,C}	Magnetic ordering	<i>T</i> (K)	Unit cell data	R _F	Atom	$M_{j}^{F}(\mu_{B})$	$\varphi_{j}{}^{\mathrm{F}}\left(^{\circ} ight)$	$M_j^{AF}(\mu_B)$	$arphi_j{}^{ m AF}$ ($^\circ$)	$R_{\rm F}{}^{\rm m}$
	Paramagnet	150	a = 0.45493(6) nm c = 0.7475(2) nm $Z_{Mn} = 0.615(2)$ $Z_X = 0.250(2)$	5.2						
$T_{\rm N}^{\rm ND}$ = 138(3) K	Antiferromagnet $AF^{K0}(D_{1d})$	118	a = 0.45493(6) nm c = 0.7464(2) nm $Z_{Mn} = 0.615(2)$ $Z_X = 0.249(2)$	4.5	Yb Mn1 Mn2			0 2.2(1) 2.2(1)	270 90	7.3
$T_{\rm C}^{\rm ND} = 112(3) {\rm K}$	Ferrimagnet $\mathbf{AF}^{K0} (\mathbf{D_{1d}}) + \mathbf{F}_{a}^{K0} (\mathbf{C}_{2})$	2	a = 0.45490(5) nm c = 0.7448(2) nm $Z_{Mn} = 0.597(4)$ $Z_X = 0.236(2)$	4.5	Yb Mn1 Mn2	3.6(3) 1.4(2) 1.4(2)	0 0 0	3.2(2) 3.2(2)	270 90	6.9

^a Mn1 occupy $(1/3, 2/3, X_{Mn})$ site and Mn2 occupy $(2/3, 1/3, -X_{Mn})$ site in the La₂O₂S-type unit cell.

112(3) K, the ferromagnetic components of Yb and Mn begin to develop, and the ferromagnetic transition occurs with resulting non-collinear arrangements of magnetic moments in the *ab* plane (Fig. 3b). The magnetic structure of YbMn₂SbBi becames the sum antiferromagnetic component **AF**^{K0} (**D**_{1d}) and ferromagnetic one with **C**₂ magnetic point group (**F**_a^{K0} (**C**₂)). The crystallographic data and magnetic parameters of YbMn₂SbBi are given in Table 2. The maximum of the I₍₀₀₂₎ intensity near ~70 K (Fig. 2a) occurs when ferromagnetic component of YbMn₂SbBi became bigger than antiferromagnetic one (Fig. 2b). The magnitude of Yb and Mn magnetic moments at 2 K (M_{Yb} = 3.6(2) µ_B, M_{Mn} = 3.5(2) µ_B) correspond to

Fig. 3. Magnetic structure of the YbMn_2SbBi compound between 138 and 112 K (a) and below 112 K (b).

the trivalent state of the Yb ions $(M_{Yb3+} = 4.0 \mu_B)$ and tetravalent state of the Mn ions $(M_{Mn4+} = 4.0 \mu_B)$ [4].

In general, the evaluation of magnetic ordering of YbMn₂SbBi is following: paramagnet (symmetry D_{3d} point group, $P\bar{3}ml$ space group) \rightarrow Antiferromagnet (symmetry D_{1d} , P2/m) \rightarrow Ferrimagnet (symmetry C_2 , P2). The YbMn₂Sb₂ shows evaluation of magnetic ordering: paramagnet (symmetry D_{3d} point group, $P\bar{3}ml$ space group) \rightarrow Antiferromagnet (symmetry D_{3d} point group, $P\bar{3}ml$ space group) \rightarrow Antiferromagnet (symmetry D_{1d} ore C_i magnetic points group) [3]. So, the presence of Bi in the p-element mixed sublattice (Sb and Bi) facilitates the ferromagnetic ordering of La₂O₂S-type compound.

4. Conclusion

The applied magnetic fields may play a role in shifting the magnetic transition temperature as it happens in the $YbMn_2Sb_2$ compound. In the known homologous compound $EuMn_2Sb_2$ [11], though the magnetic moments of the Mn-atoms sublattice might order antiferromagnetically, the overall magnetic structure could however be much more complicated, due to the possible ordering of the Eu-sublattice.

Acknowledgments

This work has been supported by the Institute Laue-Langevin (Grenoble, France) by the experiment No. 5-31-1616. This work was supported by the *Russian Fund for Basic Research* through the project No. 09-03-00173-a. Thanks to O. Isnard and P. Henry (Institute Laue-Langevin, 6 Rue J. Horowitz, 38042 Grenoble, France) for technical help in the neutron diffraction experiment.

References

- [1] R. Ruhl, W. Jeitschko, Mater. Res. Bull. 14 (1979) 513.
- [2] R. Nirmala, A.V. Morozkin, K.G. Suresh, H.-D. Kim, J.-Y. Kim, B.-G. Park, S.-J. Oh, S.K. Malik, J. Appl. Phys. 97 (2005), 10M511.
- [3] A.V. Morozkin, O. Isnard, P. Henry, S. Granovsky, R. Nirmala, P. Manfrinetti, J. Alloys Compd. 420 (2006) 34–36.
- [4] S Legvold, in: E.P. Wohlfarth (Ed.), Rare Earth Metals Alloys Ferromagnetic Materials, vol. 1, North-Holland Publish. Comp., Amsterdam, 1980, pp. 183–295.
- [5] T.B. Massalski, Binary Alloy Phase Diagrams, vol. 3, second ed., ASM International, Materials Park, OH, 1990.
- [6] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 10 (1977) 73.
- [7] www.ill.eu, Yellow Book.
- [8] J. Rodriguez-Carvajal, Physica B 192 (1993) 55-69.
- [9] J. Emsley, The Elements, second ed., Clarendon Press, Oxford, 1991.
- [10] P.S. Kireev, Introduction of Theory Group and It's Application in Solid State Physic, Moscow, High School, 1979 (in Russian).
- [11] Person's Handbook of Crystallographic Data for Intermetallic Phases, American Society for Metals, vol. 3, Metals Park, OH 44073, 1985, p. 2394.